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A progressive modeling of magnetic devices is performed via a subproblem finite element method. A complete problem is split into 
subproblems, possibly defined on different adapted overlapping meshes. Model changes are performed for added materials and for 
physical or geometrical model improvements. The subproblems can be current or voltage driven. The proposed unified procedure effi-
ciently feeds each subproblem via interface conditions, which lightens mesh-to-mesh sources transfers, and quantifies the gain given by 
each refinement of both local fields and current and voltage global quantities. 

Index Terms—Circuit coupling, finite element method, model refinement, subproblems. 

 
I. INTRODUCTION 

For efficient and accurate numerical modeling of magnetic 
devices, an innovative step-by-step methodology is developed. 
It is based on a finite element (FE) subproblem (SP) method 
(SPM) with magnetostatic and magnetodynamic problems 
solved in a sequence on different adapted meshes [1-5], from 
simplified up to extended or accurate models of the magnetic 
circuits and their windings. Each step of the SPM aims at 
modifying the solution obtained at previous steps, by calculat-
ing reaction fields due to either some added materials [2, 5] or 
some model improvements [1, 3-4]. Added materials are at the 
basis of the SPM for which either volume sources (VSs) or, 
more efficiently, to lighten mesh-to-mesh sources transfers, 
surface sources (SSs) can be applied [4-5]. The related meth-
odology already offers an efficient alternative to deal with 
source fields [5]. An additional benefit is that the developed 
tools for the SSs can directly be applied to other SPs, related 
to physical or geometrical model improvements, e.g., from 
perfect to real magnetic or electric materials [3], or from sim-
plified to detailed geometries of some components [4-5]. 

For all the considered changes, a general method is devel-
oped herein to express the coil impedance changes after each 
SP, fed not only with VSs but also SSs. The resulting SP cir-
cuit relations can be used either at the post-processing step for 
current driven coils or during the calculation itself for voltage 
driven coil or general circuit coupling, which is of importance 
for nonlinear problems or particular excitations. This consid-
erably extends the applicability of the SPM. Also, an attention 
is given to the way multiple windings can be considered to-
gether, e.g., the primary and secondary windings of transform-
ers. The developments are done in the frame of the magnetic 
vector potential formulation in both 2-D and 3-D.  

II. SEQUENCED MAGNETIC MODELS AND THEIR SOURCES 

A. Classical sequences of magnetic models 

A first considered problem (SP 1) is the one of a coil Ωs,1 
carrying a source current density js,1. The generated magnetic 
flux density b1 and magnetic field h1 are to be calculated in 
Ω1 ⊃  Ωs,1, being either free space or containing a region with 
a simplified physical model, being either a perfect electric or 
magnetic region, or even a region with a small enough skin 
depth. Such a region Ωm,1, of boundary Γm,1, can thus be con-

sidered via adequate boundary conditions (BCs), either 
n ⋅ b1|Γm,1

 = 0, n × h1|Γm,1
 = 0, with n the exterior unit normal, or 

an impedance BC [3]. Such an extension of this SP 1 to vari-
ous configurations is a good way to point out the generality of 
the proposed method. 

With the magnetic vector potential a1, defined such that 
b1 = curl a1 and an adequate gauge condition, the related weak 
formulation is 

  (µ1
−1curla1,curla ')Ω1 −( js,1,a ')Ωs,1 +< n×h1,a ' >∂Ω1= 0 , (1) 

where µ1 is the magnetic permeability and a' covers a suitable 
set of test functions [4-5]; ( · , · )Ω and < · , · >Γ denote a vol-
ume integral in Ω and a surface integral on Γ, respectively, of 
the product of their field arguments. 

Following SP 1 with the free space calculation, an SP 2 is 
defined for considering the addition of a region Ωm,2. The re-
lated reaction fields b2 and h2 can be calculated with a weak 
formulation similar to (1) but with the source current density 
substituted with a VS or SSs [2, 4-5]. The FE mesh of the new 
studied domain Ω2 can differ from the one of Ω1, which is a 
key advantage of the considered approach. With VS  
hs,2 = (µ2–1 – µ1–1) b1, non-zero only in the added region Ωm,2 
where the permeability differs from the initial one [2], the 
weak formulation is 

         (µ2
−1curla2,curla ')Ω2 + (hs,2,curla ')Ωm,2 = 0 . (2) 

Its solution a2 in Ω2 added to a1 in Ω1 gives the total solution 
a (Fig. 1, top). With SSs of trace discontinuities types, i.e., in-
terface conditions (ICs) SSs [n × h2]Γm,2

 = – n × h1|Γm,2
 and 

[n ⋅ b2]Γm,2
 = – n ⋅ b1|Γm,2

 (or [n × a2]Γm,2
 = – n × a1|Γm,2

), the weak 
formulation is [4-5] 

      (µ2
−1curla2,curla ')Ω2 +< [n×h2]Γm,2 ,a ' >Γm,2 =0 , (3) 

with the total solution a = a1+a2 in Ω2\Ωm,2 and a2 in Ωm,2 
(Fig. 1, bottom). Note that discontinuity [n × a2]Γm,2

 is strongly 
defined in the function space of a2 (at the discrete level, via a 
fixed discontinuous tangential component acting in a layer 
ΩSS,2 of FEs only on one side of Γm,2), whereas discontinuity 
[n × h2]Γm,2

 is weakly defined in (3) (via a volume integration 
from (1) in that FEs layer; the source a1 for SSs is thus only 
needed in a reduced region, which lightens the mesh-to-mesh 
projection in comparison with a VS). 



 
 

Following the other form of SP 1 with a simplified model of 
Ωm,2, either [n × h2]Γm,2

 or [n ⋅ b2]Γm,2
, or both, are to be fixed 

to non-zero sources, again in formulation (3), here possibly 
simplified with only one trace discontinuity [3] (Fig. 2). 

Formulations (2) and (3) can be extended for magnetody-
namics with eddy current terms in case Ωm,2 is a massive con-
ducting region, e.g., a transformer tank. 

B. Circuit relations of SPs for current and voltage changes 

An important feature to provide is an efficient and accurate 
way to update the coil circuit relation, in particular to calculate 
the change of the coil inductance. It is known that the magnet-
ic flux Φs linked to a coil can be calculated via the integration 
of the total a in the coil region, i.e., Φs =( ĵs ,a)Ωs,1 , with 
ĵs = ĵs,1  the current density related to a unit total current, 

called the wire density vector [2, 6]. With the SP approach, 
flux Φs would then be Φs = ( ĵs ,a1+a2)Ωs,1 =Φs,1+Φs,2  
= ( ĵs,1,a1)Ωs,1 + ( ĵs,1,a2)Ωs,2 . Nevertheless, in general, the flux 
change Φs,2 =( ĵs,1,a2)Ωs  cannot be accurately calculated in 
this way because coil Ωs,1 is not present any more in the mesh 
of Ω2. It has to be expressed in another way. 

With a VS for SP 2, the key is to write (1), for ĵs,1  and the 
so-normalized solution â1 , with test function a' particularized 
to a2 (which explicitly renders Φs,2 , thus with the possibility 
to express it in another way), and (2) with a' = â1 , and to sub-
tract one equation to the other. This gives after simplification 

 Φs,2 =( ĵs,1,a2)Ωs,1 = −((µ2
−1−µ1

−1)curl (a1+a2),curl â1)Ωm,2 .  (4) 

Such an expression only asks for an integration in the added 
region Ωm,2 of known quantities, i.e., the projection of a1 in its 
mesh and solution a2 by nature in the same mesh, which is a 
great advantage. 

With SSs for SP 2, the key is to write (1), again for ĵs,1  and 
â1 , with a' = a2, and (3) with a' = â1 , this time with â1  non-
zero only in Ω1\Ωm,1, which thus reduces the integration do-
main. Then, by subtracting one equation to the other, and after 
suitable treatments of the surface integration terms, one ob-
tains 

 Φs,2= (µ1
−1curla2,s,curl â1)ΩSS ,2−(µ2

−1curla2,curl â1,s )ΩSS ,2 ,  (5) 

where ΩSS,2 is still limited to one layer of FEs on one side of 
Γm,2, and a1,s and a2,s are the tangential traces of a1 and a2 on 
Γm,2. This is a remarkable result of great utility for efficient 
calculations, allowing efficient SSs to be used for complex 
coil excitations. In case of multiple coils, (4) and (5) can inde-
pendently be applied to each of them, for each associated â1 . 

Expressions (4) and (5) can be used at the post-processing 
level in case of a current excitation to calculate the resulting 
coil voltage change Vs,2 = −∂tΦs,2  (to be added to 
Vs,1 = −∂tΦs,1  to give the total voltage) after each change. A 
fixed current Is,1 in coil Ωs,1 asks for a zero current Is,2 for the 
correction SP 2, thus with no need to represent the coil any-
more. 

For a voltage excitation (Vs,1 fixed), (4) and (5) have to be 
involved as global equations with the additional need to let the 
total coil current Is,1 + Is,2 unknown in SP 1, the only SP in-
volving the source coil in its mesh. The VS and SSs have thus 

to be modulated by this total current in (2) and (3), respective-
ly, with a zero voltage change Vs,2, as it will be shown in de-
tail in the extended paper. 

III. APPLICATIONS AND VALIDATIONS 

The developed method for the progressive FE modeling of 
magnetic devices will be applied to inductors and transform-
ers, with illustrations and validations of the proposed steps. 
The main elements that will be pointed out are, for each SP: 
the local studied domain and its proper mesh, the circuit rela-
tions relating currents and voltages, the VSs and IC-SSs re-
ceived from previous SPs with efficient mesh-to-mesh projec-
tions in reduced regions, the expected accuracy on both fields 
and global quantities and the possibilities to improve it via 
other SPs. 

 
Fig. 1. Source field of a coil alone (COIL_1) acting as a VS or SSs in an add-
ed core (CORE). For a fixed current, the obtained total coil voltage 
Vs1,1 + Vs1,2 is checked to be equal to the one of the complete problem with a 
good accuracy. 

 
Fig. 2. Change from a perfect magnetic core with air gap to a real core via an 
SS (currents and voltages: Is1,1 = 40 (A), Vs1,1 = –11.54 – i 11257 (V), Is1,2 = 0 
(A), Vs1,2 = i 709.5 (V), pointing out the importance of the correction). 
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